AUTHORS: Davide Caffagni, Federico Cocchi, Anna Mambelli, Fabio Tutrone, Marco Zanella Marcella Cornia, Rita Cucchiara
WORK PACKAGE: WP 8 – UbiQuity
Keywords:
Abstract
Transformer-based language models like BERT have revolutionized Natural Language Processing (NLP) research, but their application to historical languages remains underexplored. This paper investigates the adaptation of BERT-based embedding models for Latin, a language central to the study of the sacred texts of Christianity. Focusing on Jerome’s Vulgate, pre-Vulgate Latin translations of the Bible, and patristic commentaries such as Augustine’s De Genesi ad litteram, we address the challenges posed by Latin’s complex syntax, specialized vocabulary, and historical variations at the orthographic, morphological, and semantic levels. In particular, we propose fine-tuning existing BERT-based embedding models on annotated Latin corpora, using self-generated hard negatives to improve performance in detecting biblical references in early Christian literature in Latin. Experimental results demonstrate the ability of BERT-based models to identify citations of and allusions to the Bible(s) in ancient Christian commentaries while highlighting the complexities and challenges of this field. By integrating NLP techniques with humanistic expertise, this work provides a case study on intertextual analysis in Latin patristic works. It underscores the transformative potential of interdisciplinary approaches, advancing computational tools for sacred text studies and bridging the gap between philology and computational analysis.